Problem 1.12

Constructing a vector to a point
Consider two points located at \mathbf{r}_{1} and \mathbf{r}_{2}, separated by distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$. Find a vector \mathbf{A} from the origin to a point on the line between \mathbf{r}_{1} and \mathbf{r}_{2} at distance $x r$ from the point at \mathbf{r}_{1} where x is some number.

Solution

The general equation for a line in three dimensions is

$$
\mathbf{y}=\mathbf{m} x+\mathbf{b} .
$$

Since we're given two points, we can determine the two unknowns, mand \mathbf{b}. When $x=0$, we're at \mathbf{r}_{1}, and when $x=1$, we're at \mathbf{r}_{2}. The two equations we can write from these conditions are the following.

$$
\begin{aligned}
\mathbf{r}_{1} & =\mathbf{m} \cdot 0+\mathbf{b} \\
\mathbf{r}_{2} & =\mathbf{m} \cdot 1+\mathbf{b}
\end{aligned}
$$

Solving this system with substitution, we obtain $\mathbf{m}=\mathbf{r}_{2}-\mathbf{r}_{1}$ and $\mathbf{b}=\mathbf{r}_{1}$. Therefore, the equation of the line that goes through \mathbf{r}_{1} and \mathbf{r}_{2} is

$$
\mathbf{y}=\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) x+\mathbf{r}_{1},
$$

where $x \in[0,1]$. A is the vector \mathbf{y}.

$$
\mathbf{A}=\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) x+\mathbf{r}_{1}
$$

